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Abstract. In perturbative calculations of quantum-mechanical path integrals in curvilinear coordinates, one
encounters Feynman diagrams involving multiple temporal integrals over products of distributions which
are mathematically undefined. In addition, there are terms proportional to powers of Dirac δ-functions
at the origin coming from the measure of path integration. We derive simple rules for dealing with such
singular terms from the natural requirement of coordinate independence of the path integrals.

1 Introduction

While quantum mechanical path integrals in curvilinear
coordinates have been defined uniquely and independently
of the choice of coordinates within the time-sliced formal-
ism [1], a perturbative definition on a continuous time
axis poses severe problems which have been solved only
recently [2,3]. To exhibit the origin of the difficulties, con-
sider the associated partition function calculated for peri-
odic paths on the imaginary-time axis τ :

Z =
∫

Dq(τ)
√

g(q) e−A[q], (1)

where A[q] is the euclidean action with the general form

A[q] =
∫ β

0
dτ

[
1
2

gµν(q(τ))q̇µ(τ)q̇ν(τ) + V (q(τ))
]

. (2)

The dots denote τ -derivatives, gµν(q) is a metric, and
g = det g its determinant. The path integral is defined per-
turbatively as follows: The metric gµν(q) and the poten-
tial V (q) are expanded around some point qµ

0 in powers of
δqµ ≡ qµ −qµ

0 . After this, the action A[q] is separated into
a free part A0[q0; δq] ≡ ∫ β

0 dτ [ 12gµν(q0)q̇µq̇ν + 1
2ω2δqµδqν ],

and an interacting part Aint[q0; δq] ≡ A[q] − A0[q0; δq].
A first problem is encountered in the measure of func-

tional integration in (1). Taking
√

g(q) into the exponent
and expanding in powers of δq, we define an effective ac-
tion A√

g = − 1
2δ(0)

∫ β

0 dτ log[g(q0 + δq)/g(q0)] which con-
tains the infinite quatity δ(0), the δ-function at the origin.
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It is a formal representation of the inverse infinitesimal lat-
tice spacing on the time axis, and is equal to the linearly
divergent momentum integral

∫
dp/(2π).

The second problem arises in the expansion of Z in
powers of the interaction. Performing all Wick contrac-
tions, Z is expressed as a sum of loop diagrams. There are
interaction terms involving δq̇2δqn which lead to Feynman
integrals over products of distributions. The diagrams con-
tain three types of lines representing the correlation func-
tions

∆(τ − τ ′) ≡ 〈δq(τ)δq(τ ′)〉 = , (3)
∂τ∆(τ − τ ′) ≡ 〈δq̇(τ)δq(τ ′)〉 = , (4)

∂τ∂τ ′∆(τ − τ ′) ≡ 〈δq̇(τ)δq̇(τ ′)〉 = . (5)

The right-hand sides define the line symbols to be used
in Feynman diagrams to follow below. Explictly, the first
correlation function reads

∆(τ, τ ′) =
1
2ω

e−ω|τ−τ ′|. (6)

The second correlation function has a discontinuity

∂τ∆(τ, τ ′) = −1
2
ε(τ − τ ′)e−ω|τ−τ ′|, (7)

where

ε(τ − τ ′) ≡ −1 + 2
∫ τ

−∞
dτ ′′δ(τ ′′ − τ ′) (8)

is a distribution which vanishes at the origin and is equal
to ±1 for positive and negative arguments, respectively.
The third correlation function contains a δ-function:

∂τ∂τ ′∆(τ, τ ′) = δ(τ − τ ′) − ω

2
e−ω|τ−τ ′|, (9)
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In mathematics, the temporal integrals over products of
such distributions are undefined [4]. The purpose of this
paper is to point out that these integrals can be defined
uniquely by setting up relations between them and or-
dinary integrals over products of nonsingular functions,
plus integrals over products of the basic distributions ε(τ),
δ(τ), or their higher time derivatives. The latter will be
specified uniquely by the requirement of coordinate invari-
ance of the path integral (1).

The internal consistency of these definitions is ensured
by previous work of the present authors. In [2], we have
shown that Feynman integrals can be uniquely defined in
momentum space as ε → 0 -limits of 1 − ε -dimensional
integrals via an analytic continuation à la ’t Hooft and
Veltman [5]. This definition makes path integrals coordi-
nate independent. In [3] we have given rules for calculating
the same results directly from Feynman integrals in a 1−ε
-dimensional space.

The calculation procedure developed in this paper
avoids the cumbersome evaluation of Feynman integrals
in 1 − ε dimensions. In fact, it does not require specifying
any regularization scheme. As a fundamental byproduct, it
lays the foundation for an extension of the theory of distri-
butions, in which also integrals over products are defined,
not only linear combinations.

2 Perturbation expansion

The envisaged calculation rules will be derived from the re-
quirement of coordinate independence of the exactly solv-
able path integral of a point particle of unit mass in a
harmonic potential ω2x2/2, whose action is

Aω =
1
2

∫ β

0
dτ

[
ẋ2(τ) + ω2x2(τ)

]
. (10)

For a large imaginary-time interval β, the partition func-
tion is given by the path integral

Zω =
∫

Dx(τ) e−Aω [x] = e−(1/2)Tr log(−∂2+ω2) = e−βω/2.

(11)
A coordinate transformation turns this into a path inte-
gral of the type (1) with a singular perturbation expan-
sion. From our work in [2,3] we know that all terms in
this expansion vanish in dimensional regularization, thus
ensuring the coordinate invariance of the perturbatively
defined path integral. In this paper, we proceed in the
opposite direction: we require the vanishing of all expan-
sion terms to find the desired identities for integrals over
products of distributions.

For simplicity we assume the coordinate transforma-
tion to preserve the symmetry x ↔ −x of the initial os-
cillator, such that its power series expansion starts out
like x(τ) = f(q(τ)) = q − gq3/3 + g2aq5/5 − · · · , where
g is a smallness parameter, and a some extra parameter.
We shall see that the identities are independent of a, such
that a will merely serve to check the calculations. The
transformation changes the partition function (11) into

Z =
∫

Dq(τ) e−AJ [q]e−A[q], (12)

where is A[q] is the transformed action, whereas AJ [q] an
effective action coming from the Jacobian of the coordi-
nate transformation:

AJ [q] = −δ(0)
∫ β

0
dτ log

δf(q(τ))
δq(τ)

. (13)

The transformed action is decomposed into a free part

Aω[q] =
1
2

∫ β

0
dτ [q̇2(τ) + ω2q2(τ)], (14)

and an interacting part which reads to second order in g:

Aint[q] =
1
2

∫ β

0
dτ

{
− g

[
2q̇2(τ)q2(τ) +

2ω2

3
q4(τ)

]
(15)

+ g2
[
(1 + 2a) q̇2(τ)q4(τ) + ω2

(
1
9

+
2a

5

)
q6(τ)

]}
.

To the same order in g, the Jacobian action (13) is

AJ [q] = −δ(0)
∫ β

0
dτ

[
−gq2(τ) + g2

(
a − 1

2

)
q4(τ)

]
. (16)

For g = 0, the transformed partition function (12) coin-
cides, of course, with (11). When expanding Z of (12) in
powers of g, we obtain Feynman integrals to each order
in g, whose sum must vanish to ensure coordinate invari-
ance. By considering only connected Feynman diagrams,
we study directly the energy of the ground state energy.

3 Ground state energy

The graphical expansion for the ground state energy will
be calculated here only up to three loops. To order gn,
there exist Feynman diagrams with L = n+1, n, and n−1
number of loops from the interaction terms (15) and (16),
respectively. The diagrams are composed of the three line
types in (3)–(5), and new interaction vertices arising for
each power of g. The diagrams from the Jacobian action
(16) are easily recognized by accompanying factors δn(0).

To first order in g, there exists only three diagrams,
two originated from the interaction (15), and one from
the Jacobian action (16):

− g − g ω2 + g δ(0) . (17)

To order g2, we distinguish several contributions. First
there are two three-loop local diagrams coming from the
interaction (15), and one two-loop local diagram from the
Jacobian action (16):

g2

[
3

(
1
2

+ a

)
+ 15ω2

(
1
18

+
a

5

)

−3
(

a − 1
2

)
δ(0)

]
. (18)
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We call a diagram local if it involves no temporal integral.
The Jacobian action (16) contributes further the nonlocal
diagrams:

−g2

2!

{
2δ2(0) − 4δ(0)

[
+ + 2ω4 ]}

.

(19)
The remaining diagrams come from the interaction (15)
only. They are either of the three-bubble type, or of the
watermelon type, each with all possible combinations of
the three line types (3)–(5): The sum of all three-bubbles
diagrams is

−g2

2!
[
4 + 2 + 2

+8ω2 + 8ω2 + 8ω4 ]
. (20)

The watermelon-like diagrams contribute

−g2

2!
4
[

+ 4 + + 4ω2 +
2
3
ω4

]
. (21)

Since the equal-time expectation value 〈q̇(τ) q(τ)〉 van-
ishes according to (7) there are, in addition, a number
of trivially vanishing diagrams, which have been omitted.

In our previous work [2,3], all integrals were calculated
in D = 1−ε dimensions, taking the limit ε → 0 at the end.
In this way we confirmed that the sums of all Feynman
diagrams contributing to each order in g vanish. Here we
proceed in the opposite direction and derive the rules for
integrating products of distributions from the vanishing
of the sums.

4 Rules for integrals over distributions

In a first step we express integrals containing singular time
derivatives ∆̇(τ), ∆̈(τ) in terms of integrals over regular
correlation functions ∆(τ), plus integrals containing fun-
damental distributions ε- and δ-functions.

Most simply, we find by explicit integration for inte-
grals over products of two singular correlation functions
the relation∫

dτ
[
∆̇2(τ) + ω2∆2(τ)

]
= ∆(0). (22)

Well-defined integrals over products of four correlation
functions are ∫

dτ ∆4(τ) =
1

4ω2 ∆3(0), (23)∫
dτ ∆̇2(τ)∆2(τ) =

1
4
∆3(0), (24)∫

dτ ∆̇4(τ) =
1
4
ω2∆3(0). (25)

We now turn to integrals involving the singular func-
tion ∆̈2(τ). These can be expressed in terms of integrals

over regular correlation functions ∆(τ), plus integrals con-
taining pure products of ε- and δ-functions, using the inho-
mogeneous field equation satisfied by the correlation func-
tion (6):

∆̈(τ) = −
∫

d̄k
k2

k2 + ω2 eikτ = − δ(τ) + ω2∆(τ) . (26)

With this and (22), we obtain the relation∫
dτ

[
∆̈2(τ) + 2ω2∆̇2(τ) + ω4∆2(τ)

]
=

∫
dτ δ2(τ) . (27)

The last integral is undefined. Its value will be specified
in the next section. Before coming to this, however, let
us derive relations for integrals over ∆̈(τ)∆̇2(τ)∆(τ) and
∆̈2(τ)∆2(τ). Applying again the field equation (26), we
find the relations∫

dτ ∆̈(τ)∆̇2(τ)∆(τ) = −
∫

dτ ∆̇2(τ)∆(τ)δ(τ)

+ω2
∫

dτ ∆̇2(τ)∆2(τ) (28)

and∫
dτ ∆̈2(τ)∆2(τ) =

∫
dτ ∆2(τ)δ2(τ) − 2ω2∆3(0)

+ω4
∫

dτ ∆4(τ). (29)

Combining these with (23) and (24), we obtain∫
dτ ∆̈(τ)∆̇2(τ)∆(τ)

= − 1
8ω

∫
dτ ε2(τ)δ(τ) +

1
4
ω2∆3(0), (30)

∫
dτ ∆̈2(τ)∆2(τ) =

∫
dτ ∆2(τ)δ2(τ) − 7

4
ω2∆3(0). (31)

Relations (27), (30), and (31) reduce all integrals over
singular products of correlation functions to regular inte-
grals, plus undefined integrals containing δ2(τ) and
ε2(τ)δ(τ). We are now going to show, that the physically
necessary coordinate independence of path integrals yields
the following rules for integrals over products of two δ-
functions occuring in (27) and (31):∫

dτ f(τ)δ2(τ) = f(0)δ(0), (32)

and for integral over product of two ε-functions with one
δ-function encountered in (30):∫

dτ f(τ)ε2(τ)δ(τ) =
1
4
f(0), (33)

for any smooth test function f(τ).
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5 Imposing coordinate independence

To first order in g, the sum of Feynman diagrams (17)
must vanish:

+ ω2 − δ(0) = 0. (34)

The analytic form of this relation is[
−∆̈(0) + ω2∆(0) − δ(0)

]
∆(0) = 0, (35)

the zero on the right-hand side being a direct consequence
of the equation of motion (26) for the correlation function
at origin.

To order g2, the same equation reduces the sum of
all local diagrams in (18) to a finite result plus a term
proportional to δ(0):[

−3
(

1
2

+ a

)
∆̈(0) + 15

(
1
18

+
a

5

)
ω2∆(0)

−3
(

a − 1
2

)
δ(0)

]
∆2(0) =

[
3δ(0) − 2

3
ω2∆(0)

]
∆2(0).

Representing right-hand side diagrammatically, we obtain
the identity

Σ (18) = 3δ(0) − 2
3
ω2 , (36)

where Σ (18) denotes the sum of all diagrams in (18). Us-
ing the identity (22) together with the field equation (26),
we reduce the sum (19) of all one and two-loop bubbles
diagrams to terms involving δ(0) and δ2(0):

− 1
2!

{
2δ2(0)

∫
dτ ∆2(τ) − 4δ(0)

∫
dτ

×
[
∆(0)∆̇2(τ)−∆̈(0)∆2(τ)+2ω2∆(0)∆2(τ)

] }

= 2∆2(0) δ(0) + δ2(0)
∫

dτ∆2(τ). (37)

Hence we find the diagrammatic identity

− 1
2! Σ (19) = 2δ(0) + δ2(0) . (38)

Now, the terms accompanying δ2(0) turn out to cancel
similar terms coming from the sum of all three-loop bub-
bles diagrams in (20). In fact, the identities (22) and (27)
lead to

− 1
2!

∫
dτ

[
−4∆(0)∆̈(0)∆̇2(τ) + 2∆2(0)∆̈2(τ)

+2∆̈2(0)∆2(τ) + 8ω2∆2(0)∆̇2(τ)

−8ω2∆(0)∆̈(0)∆2(τ) + 8ω4∆2(0)∆2(τ)
]

= −
[∫

dτ δ2(τ) + 2δ(0)
]
∆2(0)− δ2(0)

∫
dτ ∆2(τ).

Thus we find the diagrammatic identity for all bubbles
diagrams

− 1
2! Σ (19) − 1

2!
Σ(20) = −

∫
dτ δ2(τ) . (39)

Finally, the relations (23), (24), (25), (30), and (31) reduce
the sum (21) of all watermelon-like diagrams to a finite
contribution, plus integrals involving δ2(τ) and ε2(τ)δ(τ):

− 4
2!

∫
dτ

[
∆2(τ)∆̈2(τ) + 4∆(τ)∆̇2(τ)∆̈(τ) + ∆̇4(τ)

+4ω2∆2(τ)∆̇2(τ) +
2
3
ω4∆4(τ)

]
= −2

∫
dτ ∆2(τ)δ2(τ) +

1
ω

∫
dτ ε2(τ)δ(τ)

−4
3

ω2∆3(0) . (40)

Combining these with all local diagrams (36), we obtain
the diagrammatic identity

Σ (18) − 4
2!

Σ(21)

=
[
3δ(0) − 2∆−2(0)

∫
dτ ∆2(τ)δ2(τ)

]

+ 2ω2
[
4

∫
dτ ε2(τ)δ(τ) − 1

]
. (41)

If all terms in (39) and (41) are to sum up to zero, as
required by coordinate independence, we must have the
integration rules for the distributional products (32) and
(33), and these determine completely the right-hand sides
of relations (27), (31), and (30).

The procedure can be continued to higher-loop dia-
grams yielding calculation rules for integrals over higher
products of ε- and δ-function, and their time derivatives.

It is important to realize that at no place do we have
to specify the value of δ(0), or a regularization scheme for
the singular integrals. There is perfect cancellation of all
powers of δ(0) arising from the expansion of the Jacobian
action, which is the fundamental reason why the heuristic
Veltman rule of setting δ(0) = 0 can be used everywhere
without problems.

Note that in this purely one-dimensional approach we
are not, in general, allowed to use partial integration for
integrals containing ε- and δ-function, or their time deriva-
tives. This is possible only for the simplest integrals of this
kind. An example is the first integral in the relation (22)
which is compatible with partial integration:∫

dτ ∆̇2(τ) = −
∫

dτ ∆(τ)∆̈(τ), (42)

as can be verified by inserting the equation of motion (26).
The same is true for (24).

For integrals containing more time derivatives, how-
ever, partial integration would lead to inconsistencies. To
illustrate this problem consider the integral
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∫
dτ ε2(τ)δ(τ)e−λ|τ |, (43)

with an arbitrary parameter λ. Applying partial integra-
tion reduces this to the completly regular form∫

dτ ε2(τ)δ(τ)e−λ|τ | =
λ

6

∫
dτ ε4(τ)e−λ|τ | =

1
3
, (44)

for any value of λ. For λ = 3ω this yields the relation∫
dτ ∆̈(τ)∆̇2(τ)∆(τ) = −1

3

∫
dτ ∆̇4(τ). (45)

On the other hand, we may transform (43) by partial in-
tegration to∫

dτ ε2(τ)δ(τ)e−λ|τ |

=
∫

dτ ε(τ)δ(τ)
d

dτ

[
− 1

λ
e−λ|τ |

]

=
1
λ

[
2

∫
dτ δ2(τ)e−λ|τ | +

∫
dτ ε(τ)δ̇(τ)e−λ|τ |

]
. (46)

This implies the relation∫
dτ ∆̈(τ)∆̇2(τ)∆(τ)

= −1
2

∫
dτ ∆̈2(τ)∆2(τ)

−1
2

∫
dτ

d

dτ

[
∆̈(τ)

]
∆̇(τ)∆2(τ). (47)

Inserting here the explicit representations (30) and (31),
a comparison with (46) yields∫

dτ ε2(τ)δ(τ)e−λ|τ | = 1. (48)

instead of (44). Thus, partial integration is inconsistent in
integrals over products of distributions.

From the perspective of our previous papers [2,3]
where all integrals were defined in d = 1 − ε dimensions
and continued to d → 1 at the end, this failure is obvious:
Partial integration is forbidden whenever several dots can
correspond to different contractions of partial derivatives
∂α, ∂β , . . ., from which they arise in the d → 1 -limit. The
different contractions may lead to different integrals. The
simplest example is∫

ddτ ∆2(τ)∆2
αα(τ)

−
∫

ddτ ∆2(τ)∆2
αβ(τ) −→

d→1
− 1

8ω
. (49)

The integrals on the left-hand side are indistinguishable
in d = 1 dimension. In the present purely one-dimensional
approach, this ambiguity is accounted for by abandon-
ing partial integration for integrals containing ε- and δ-
function, or their time derivatives. The requirement of co-
ordinate invariance, on the other hand, fixes such integrals
uniquely. For example, the rule (33) implies the integral∫

dτ ε2(τ)δ(τ) =
1
4
, (50)

in contrast to the inconistent values 1/3 and 1 in the false
equation (44), (45) and (48).

6 Summary

In this note we have set up simple rules for calculating
products of distributions which allow us to evaluate sin-
gular Feynman integrals appearing in perturbatively de-
fined path integrals without the previously necessary te-
dious treatment of dimensionally regularized integrals in
1 − ε dimensions. The rules follow directly from the phys-
ically necessary invariance of perturbatively defined path
integral under coordinate transformations. Our procedure
works without specifying any regularization scheme. It
uses only the equations of motion. In contrast to the 1− ε
-dimensional calculations in [2,3], partial integration is
not applicable to integrals containing ε- and δ-function,
or their time derivatives.

Just as in the time-sliced definition of path integrals
in curved spcae in [1], there is absolutely no need for ex-
tra compensating potential terms found necessary in the
treatments in [6–8].
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